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Thus far we have looked at regression models in 
which the response variable is quantitative and the 
explanatory variables are a mixture of quantitative 
and qualitative.  
 
Now we look at models in which the response 
variable is qualitative and binary and the explanatory 
variables are, again, a mixture of quantitative and 
qualitative.  
 
In this context, the response variable, Y might be (i) 
whether or not a patient survives a procedure, (ii) 
Whether an infant is low birth-weight or not, or (iii) 
whether or not a patient can return home or go on to 
long-term care following rehabilitation. 
 
 

When the response variable is qualitative with just 
two categories a frequently used technique is called 
logistic regression. 
 
 


Thus far we have looked at regression models in which the response variable is quantitative and the explanatory variables are a mixture of quantitative and qualitative. 



Now we look at models in which the response variable is qualitative and binary and the explanatory variables are, again, a mixture of quantitative and qualitative. 



In this context, the response variable, Y might be (i) whether or not a patient survives a procedure, (ii) Whether an infant is low birth-weight or not, or (iii) whether or not a patient can return home or go on to long-term care following rehabilitation.





When the response variable is qualitative with just two categories a frequently used technique is called logistic regression.
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Uses for Logistic Regression  
 
Logistic regression can be used: 
 

• to create a prediction rule for assigning 
individuals to one of two groups. 

 

• and to identify ‘risk’ factors that affect the 
likelihood of an outcome. 

 

• to remove the effect of confounding variables in 
observational studies in which the response is 
binary. 

 

• to create propensity scores. These scores are 
used in observational studies as estimates of the 
probabilities that each participant would 
choose/receive the experimental treatment. 


Uses for Logistic Regression 



Logistic regression can be used:



· to create a prediction rule for assigning individuals to one of two groups.



· and to identify ‘risk’ factors that affect the likelihood of an outcome.



· to remove the effect of confounding variables in observational studies in which the response is binary.



· to create propensity scores. These scores are used in observational studies as estimates of the probabilities that each participant would choose/receive the experimental treatment.
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The Burn data 
 
SOURCE: Hosmer, D.W., Lemeshow, S. and 
Sturdivant, R.X. (2013) Applied Logistic Regression: 
Third Edition. These data are copyrighted by John 
Wiley & Sons Inc. 
 
 

Hospital Discharge Status 0 =  Alive  
1 = Dead   
                              

Death 

Age at admission Years 
 

Age 

Gender 0 = Female 
1 = Male 
 

Gender 

Race 0 = Non-White  
1 = White 
 

Race 

Total burn surface area 0 - 100% 
 

TBSA 

Burn involved inhalation 
injury 

1 = Yes 
0 = No 
 

INH 

Flame involved in burn 
injury            

1 = Yes 
0 = No 

Flame 

 


The Burn data



SOURCE: Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression: Third Edition. These data are copyrighted by John Wiley & Sons Inc.





		Hospital Discharge Status

		0 =  Alive 

1 = Dead  

                             

		Death



		Age at admission

		Years



		Age



		Gender

		0 = Female

1 = Male



		Gender



		Race

		0 = Non-White 

1 = White



		Race



		Total burn surface area

		0 - 100%



		TBSA



		Burn involved inhalation injury

		1 = Yes

0 = No



		INH



		Flame involved in burn injury           

		1 = Yes

0 = No

		Flame
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head(burn) 
 
  Death   Age Gender  Race  TBSA INH_INJ Flame 
1     0 26.6       1     1 25.3        0     1 
2     0  2.00      0     0  5.00       0     0 
3     0 22.0       0     0  2.00       0     0 
4     0 37.3       1     1  2.00       0     0 
5     0 52.1       1     1  6.00       0     1 
6     0 50.2       1     1  7.00       0     0 
 
 
tail(burn) 
 
  Death   Age Gender  Race  TBSA INH_INJ Flame 
1     1  83.7      0     1 50.5        0     0 
2     1  34.2      1     1 91.0        1     1 
3     1  59.0      1     1 37.5        1     1 
4     1  85.5      1     1  4.60       1     1 
5     1  46.8      1     0 47.0        1     1 
6     1  40.8      1     1  1.20       1     1 


head(burn)
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1     0 26.6       1     1 25.3        0     1

2     0  2.00      0     0  5.00       0     0

3     0 22.0       0     0  2.00       0     0

4     0 37.3       1     1  2.00       0     0

5     0 52.1       1     1  6.00       0     1

6     0 50.2       1     1  7.00       0     0





tail(burn)



  Death   Age Gender  Race  TBSA INH_INJ Flame

1     1  83.7      0     1 50.5        0     0

2     1  34.2      1     1 91.0        1     1

3     1  59.0      1     1 37.5        1     1

4     1  85.5      1     1  4.60       1     1

5     1  46.8      1     0 47.0        1     1

6     1  40.8      1     1  1.20       1     1
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In this case we shall construct models that relate 
whether or not a person will die to (i) Flame, (ii) 
TBSA, and (iii) Flame and TBSA, and finally, to all 
the available predictors. 
In this case, the response variable (Y) can take two 
values (1 or 0) 
 

Why does linear regression not work in this case? 
 
 
model <- lm(Death ~ TBSA, burn) 
model 
 
Call: 
lm(formula = Death ~ TBSA, data = burn) 
 
Coefficients: 
(Intercept)         TBSA   
  -0.009719     0.011792   
 

 

Death  =  -0.00972   +  0.01179TBSA 
 
When TBSA = 50%         Predicted Death = 0.5798   
When TBSA = 0.1%   Predicted Death = -0.0085   
When TBSA = 99%        Predicted Death =  1.157 


In this case we shall construct models that relate whether or not a person will die to (i) Flame, (ii) TBSA, and (iii) Flame and TBSA, and finally, to all the available predictors.

In this case, the response variable (Y) can take two values (1 or 0)



Why does linear regression not work in this case?





model <- lm(Death ~ TBSA, burn)

model



Call:

lm(formula = Death ~ TBSA, data = burn)



Coefficients:

(Intercept)         TBSA  

  -0.009719     0.011792  





Death  =  -0.00972   +  0.01179TBSA



When TBSA = 50% 	       Predicted Death = 0.5798  

When TBSA = 0.1% 	 Predicted Death = -0.0085  

When TBSA = 99%	       Predicted Death =  1.157
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plot(jitter(Death, 0.5) ~ TBSA, data = burn,  
  col = "red", 
  main = "Plot of 'Death' against TBSA") 
abline(model, col = "blue") 

 


plot(jitter(Death, 0.5) ~ TBSA, data = burn, 

  col = "red",

  main = "Plot of 'Death' against TBSA")

abline(model, col = "blue")

[image: ]
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Some Preliminary Analyses 
 
tally(~Death, data = burn) 
Death 
  0   1  
850 150  
 
tally(Death ~ Gender, data = burn) 
     Gender 
Death   0   1 
    0 246 604 
    1  49 101 
tally(Death ~ Gender, data = burn,  
 format = "percent") 
     Gender 
Death        0        1 
    0 83.38983 85.67376 
    1 16.61017 14.32624 

 
  Female  Male   All 
 --------------------------------------------------------- 
 No  246       604   850 
Death     
 Yes    49 (16.6%)  101 (14.3%)   150 (15%) 
 --------------------------------------------------------- 
 All  295  705 1000 

 


Some Preliminary Analyses



tally(~Death, data = burn)

Death

  0   1 

850 150 



tally(Death ~ Gender, data = burn)

     Gender

Death   0   1

    0 246 604

    1  49 101

tally(Death ~ Gender, data = burn, 

 format = "percent")

     Gender

Death        0        1

    0 83.38983 85.67376

    1 16.61017 14.32624



		

		

		Female

		 Male

		  All



		

		---------------------------------------------------------



		

		No

		 246     

		 604

		  850



		Death

		

		

		

		



		

		Yes

		   49 (16.6%)

		 101 (14.3%)

		  150 (15%)



		

		---------------------------------------------------------



		

		All

		 295

		 705

		1000
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Race 
  Non-White  White   All 
 --------------------------------------------------------- 
 No  356       494   850 
Death     
 Yes    55 (13.4%)    95 (16.1%)   150 (15%) 
 --------------------------------------------------------- 
 All  411  589 1000 

 
INH_INJ 
  No  Yes   All 
 --------------------------------------------------------- 
 No  800         50   850 
Death     
 Yes    78 (8.9%)    72 (59.0%)   150 (15%) 
 --------------------------------------------------------- 
 All  878  122 1000 

 
Flame 
  No  Yes   All 
 --------------------------------------------------------- 
 No  451        399   850 
Death     
 Yes    20 (4.2%)   130 (24.6%)   150 (15%) 
 --------------------------------------------------------- 
 All  471    529 1000 

 


Race

		

		

		Non-White

		 White

		  All



		

		---------------------------------------------------------



		

		No

		 356     

		 494

		  850



		Death

		

		

		

		



		

		Yes

		   55 (13.4%)

		   95 (16.1%)

		  150 (15%)



		

		---------------------------------------------------------



		

		All

		 411

		 589

		1000







INH_INJ

		

		

		No

		 Yes

		  All



		

		---------------------------------------------------------



		

		No

		 800     

		   50

		  850



		Death

		

		

		

		



		

		Yes

		   78 (8.9%)

		   72 (59.0%)

		  150 (15%)



		

		---------------------------------------------------------



		

		All

		 878

		 122

		1000







Flame

		

		

		No

		 Yes

		  All



		

		---------------------------------------------------------



		

		No

		 451     

		  399

		  850



		Death

		

		

		

		



		

		Yes

		   20 (4.2%)

		  130 (24.6%)

		  150 (15%)



		

		---------------------------------------------------------



		

		All

		 471

		   529

		1000
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Flame 
  No  Yes   All 
 --------------------------------------------------------- 
 No  451        399   850 
Death     
 Yes    20 (4.2%)   130 (24.6%)   150 (15%) 
 --------------------------------------------------------- 
 All  471    529 1000 
 

ˆ Np    =    20
471

   =  0.04246   

 

ˆ Yp    =    130
529

  =  0.24575 

 
ˆ NO   =   20

451
 =  0.04435     ˆ YO   =   130

399
   =   0.32581 

 
 
OR�   =  0.32581/0.04435  = 7.346. 
 
Where a flame is involved, the burn victim’s odds of 
death is 7.3 times the odds when a flame is not 
involved. 


Flame

		

		

		No

		 Yes

		  All



		

		---------------------------------------------------------



		

		No

		 451     

		  399

		  850



		Death

		

		

		

		



		

		Yes

		   20 (4.2%)

		  130 (24.6%)

		  150 (15%)



		

		---------------------------------------------------------



		

		All

		 471

		   529

		1000











   =       =  0.04246		







   =      =  0.24575











  =    =  0.04435	      =      =   0.32581





  =  0.32581/0.04435  = 7.346.



Where a flame is involved, the burn victim’s odds of death is 7.3 times the odds when a flame is not involved.
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mean(TBSA ~ Death, data = burn) 
        0         1  
 8.504588 42.106000  
 
median(TBSA ~ Death, data = burn) 
 0  1  
 5 36  
 

 

proportion <- tally(~Death, data = burn)/1000 
boxplot(TBSA ~ Death, data = burn,  
 width = proportion,  
 col = "lightblue") 
 

 


mean(TBSA ~ Death, data = burn)

        0         1 

 8.504588 42.106000 



median(TBSA ~ Death, data = burn)

 0  1 

 5 36 





proportion <- tally(~Death, data = burn)/1000

boxplot(TBSA ~ Death, data = burn, 

 width = proportion, 

 col = "lightblue")
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1. Descriptive Aspects of Logistic Regression 


1. Descriptive Aspects of Logistic Regression
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The Simple Logistic Regression Model 
 
Logistic regression models enable us to predict not 
Y but rather, the quantity p  = P(Y  = 1), the 
probability that a person will take the value Y = 1, as 
a function of the X variable(s). The simple logistic 
regression model is 
 

 P(Y  =  1)   =  
0 1

0 1

β   +  β X

β   +  β X
e

1 + e
      

 
Here, e  =  2.718… is the base of natural logarithms.  
 
The quantity  
 

0 1β   +  β Xe   
 

must always be positive and can vary from 0 up to 
infinity. As a consequence 
 

P(Y  =  1)   =    
0 1

0 1

β   +  β X

β   +  β X
e

1 + e
    

  
must always lie between 0 and 1. 


The Simple Logistic Regression Model



Logistic regression models enable us to predict not Y but rather, the quantity p  = P(Y  = 1), the probability that a person will take the value Y = 1, as a function of the X variable(s). The simple logistic regression model is





	P(Y  =  1)   =       



Here, e  =  2.718… is the base of natural logarithms. 



The quantity 





 



must always be positive and can vary from 0 up to infinity. As a consequence





P(Y  =  1)   =       

 

must always lie between 0 and 1.
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In simple linear regression (and multiple linear 
regression), statistical software uses the procedure 
called least squares to obtain, from the data,the 
‘best’ values for the regression coefficients. 
 
 
In the context of logistic regression, the software 
uses, not least squares, but a procedure called 
Maximum Likelihood Estimation to find the 'best' 
values for b0 and b1 from our data. The method 
seeks to find the values  
 
b0  =  ˆ 0β   and  b1 =  ˆ 1β    
 
which are ‘most likely’ to have generated the sample 
of  zeros or ones. 


In simple linear regression (and multiple linear regression), statistical software uses the procedure called least squares to obtain, from the data,the ‘best’ values for the regression coefficients.





In the context of logistic regression, the software uses, not least squares, but a procedure called Maximum Likelihood Estimation to find the 'best' values for b0 and b1 from our data. The method seeks to find the values 







b0  =    and  b1 =    



which are ‘most likely’ to have generated the sample of  zeros or ones.
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There are three ways to write the fitted model: 
 

 

1. P(Y = 1)�   =  p̂    =    
b0  +  b1X

b0  +  b1X
e

1+ e
 

 
This is an expression for the predicted 
probability that Y = 1. 
 

2. 
ˆ

ˆ
p

1- p
  =  Ô  =    eb0  +  b1X   =     Exp(b0  +  b1X) 

 
 This is an expression for the predicted odds that 
Y = 1. 
 

3. L̂    =  ln(
ˆ

ˆ
p

1- p
)  =   b0  +  b1X 

 
This is an expression for the predicted log odds 
that Y = 1. 
 


There are three ways to write the fitted model:



		





  =     =    



This is an expression for the predicted probability that Y = 1.







2.   =    =    eb0  +  b1X   =     Exp(b0  +  b1X)



 This is an expression for the predicted odds that Y = 1.







3.    =  ln()  =   b0  +  b1X



This is an expression for the predicted log odds that Y = 1.
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Logistic Regression when X is also 0/1 
 
Here is the ‘coefficients’ output for a logistic 
regression when Flame is the explanatory variable. 
 
 

model <- glm(Death ~ Flame,  
 family = binomial,  
 data = burn) 
model 
 
 
Coefficients: 
(Intercept)        Flame   
     -3.116        1.994   

 
 

 P(Y = 1)�   =   p̂    =    
- 3.116  +  1.994Flame

- 3.116  +  1.994Flame
e

1+ e
 

 

                  Ô  =    e- 3.116  +  1.994Flame 

 

          L̂    =   -3.116   +  1.994 Flame 


Logistic Regression when X is also 0/1



Here is the ‘coefficients’ output for a logistic regression when Flame is the explanatory variable.





model <- glm(Death ~ Flame, 

 family = binomial, 

 data = burn)

model





Coefficients:

(Intercept)        Flame  

     -3.116        1.994  









  =      =    





                    =    e- 3.116  +  1.994Flame





             =   -3.116   +  1.994 Flame
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“No Flame”  P(Y = 1)�   =  
- 3.116  +  1.994(0)

- 3.116  +  1.994(0)
e

1+ e
  =  0.04245 

 

“Flame”  P(Y = 1)�   =    
- 3.116  +  1.994(1)

- 3.116  +  1.994(1)
e

1+ e
  =  0.24575 

 
 
These are the sample proportions we found earlier. 
 
 
“No Flame”     Ô  =    e- 3.116  +  1.994(0)  =  0.04435 
 
“Flame”         Ô  =    e- 3.116  +  1.994(1)  =  0.32581 
 
 
These are the sample odds we found earlier. 
 
 
 
When we have a 0/1 variable as the only 
explanatory variable, logistic regression returns 
predictions equal to the sample proportions and 
odds.  




“No Flame”   =    =  0.04245





“Flame”   =      =  0.24575





These are the sample proportions we found earlier.







“No Flame”       =    e- 3.116  +  1.994(0)  =  0.04435





“Flame”           =    e- 3.116  +  1.994(1)  =  0.32581





These are the sample odds we found earlier.







When we have a 0/1 variable as the only explanatory variable, logistic regression returns predictions equal to the sample proportions and odds. 
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An important result! 
 
 
X is a variable that takes values 0 or 1 
 
 
The odds that Y = 1   =  eb0  +  b1X    
 
 

The odds ratio, OR�   =  oddsthat Y=1whenX=1
oddsthat Y=1whenX=0

                                                                   

                         

                         =  
b0  +  b1(1)

b0  +  b1(0)
e
e

 

 
                                =  eb0 + b1 – b0     = eb1   
 
 
For our example  OR�   =   eb1  =  e1.994  =  7.346  


An important result!





X is a variable that takes values 0 or 1





The odds that Y = 1   =  eb0  +  b1X   







The odds ratio,   =                                                                    

                        



                         =  



                                =  eb0 + b1 – b0     = eb1  





For our example    =   eb1  =  e1.994  =  7.346 
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Logistic Regression When the Explanatory 
Variable is Quantitative (TBSA) 
 
 
model <- glm(Death ~ TBSA, binomial, burn) 
model 
 

 

 P(Y = 1)�   =   p̂    =      1+

- 3.34511 + 0.08537TBSA

- 3.34511 + 0.08537TBSA
e

e  

 

 

TBSA 
 

 P(Y = 1)�    

------------------------------------------------- 
1% 0.036978 

 
20% 0.162777 

 
50% 0.715732 

 
80% 0.970243 

 
99% 0.993979 

 


Logistic Regression When the Explanatory Variable is Quantitative (TBSA)





model <- glm(Death ~ TBSA, binomial, burn)

model









  =      =      





		TBSA



		  



		-------------------------------------------------



		1%
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		20%
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		50%
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		80%
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		99%

		0.993979
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x <- seq(1,100) 

z <- exp(-3.34511 + 0.08537*x) 

y <- z/(1 + z) 

plot(y ~ x, col = "red", type = "l",  

     main = "Plot of P(Y = 1) against TBSA",  

     xlab = "TBSA",  

     ylab = "P(Y = 1)") 
 

(The notation type = “l” connects the dots and omits the 
symbols.) 
 

 


x <- seq(1,100)

z <- exp(-3.34511 + 0.08537*x)

y <- z/(1 + z)

plot(y ~ x, col = "red", type = "l", 

     main = "Plot of P(Y = 1) against TBSA", 

     xlab = "TBSA", 

     ylab = "P(Y = 1)")



(The notation type = “l” connects the dots and omits the symbols.)
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Ô   =  odds that Y= 1   =   - 3.34511 - 0.08537TBSAe  

 
The predicted odds that a patient with TBSA of 20%  
will die is  
 

- 3.34511 - 0.08537(20)e     =   0.162777 
 
The predicted odds that a patient with TBSA of 80%  
will die is  
 

- 3.34511 - 0.08537(80)e    =  0.970243  






  =  odds that Y= 1   =   



The predicted odds that a patient with TBSA of 20%  will die is 





    =   0.162777



The predicted odds that a patient with TBSA of 80%  will die is 





   =  0.970243 
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Earlier, we noted that when X is a 0/1 variable 
 

OR�   =  oddsthat Y=1whenX=1
oddsthat Y=1whenX=0

  = eb1                                                                    

 
Does eb1 have any similar interpretation when X is 
quantitative?   
 
Yes! 
 

eb1   =  oddsthat Y=1 for X
oddsthat Y=1 for X - 1

 

 
For our example, b1  =  0.08537   
 
So   eb1   =  e-0.08537     =  1.08912 
 
 
For each additional 1% in TBSA, the predicted odds 
of dying change by a factor of 1.09. 


Earlier, we noted that when X is a 0/1 variable





  =    = eb1                                                                   



Does eb1 have any similar interpretation when X is quantitative?  



Yes!





eb1   =  



For our example, b1  =  0.08537  



So   eb1   =  e-0.08537     =  1.08912





For each additional 1% in TBSA, the predicted odds of dying change by a factor of 1.09.
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In logistic regression where X is quantitative, eb1 is 

the factor by which the odds of Y  = 1 change as X 

increases by one unit. In other words, eb1 is the odds 

(that Y = 1) ratio associated with being X as 

opposed to X - 1. 

 

 

The odds of a patient with a TBSA of 21 dying is 
1.08912 times the corresponding odds for a patient 
with a TBSA of 20.    
 
The odds of a patient with a TBSA of 81 dying is 
1.08912 times the corresponding odds for a patient 
with a TBSA of 80.    
 
Odds of dying with TBSA of 36
Odds of dying with TBSA of 26

     =    

 

 
Odds of dying with TBSA of 26
Odds of dying with TBSA of 36

    =   


In logistic regression where X is quantitative, eb1 is the factor by which the odds of Y  = 1 change as X increases by one unit. In other words, eb1 is the odds (that Y = 1) ratio associated with being X as opposed to X - 1.





The odds of a patient with a TBSA of 21 dying is 1.08912 times the corresponding odds for a patient with a TBSA of 20.   



The odds of a patient with a TBSA of 81 dying is 1.08912 times the corresponding odds for a patient with a TBSA of 80.   
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    =  
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Classification Tables 
The following code will assign a 1 if P(Y = 1) > 0.5 
and  a 0 if P(Y = 1) < 0.5 to preddeath. 
 
model <- glm(Death ~ TBSA, binomial,  
         burn) 
fit <- fitted(model)   
# gives predicted probabilities 
 
preddeath <- rep(0, 1000) 
preddeath[fit >= 0.5] <- 1  
 
tally(preddeath ~ burn$Death,  
 format = "percent") 
 
        burn$Death 
preddeath         0         1 
        0 98.470588 54.666667 
        1  1.529412 45.333333 
 
               

         Actual 
 
Death 

 

  No  Yes   All 
 --------------------------------------------------------- 
Predicted No  837  (98.5%)       82  919  
Death     
 Yes    13     68 (45.3%)    81  
 --------------------------------------------------------- 
 All  850    150 1000 


Classification Tables

The following code will assign a 1 if P(Y = 1) > 0.5 and  a 0 if P(Y = 1) < 0.5 to preddeath.



model <- glm(Death ~ TBSA, binomial, 

         burn)

fit <- fitted(model)  

# gives predicted probabilities



preddeath <- rep(0, 1000)

preddeath[fit >= 0.5] <- 1 



tally(preddeath ~ burn$Death, 

 format = "percent")



        burn$Death

preddeath         0         1

        0 98.470588 54.666667

        1  1.529412 45.333333
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Death: p >0.5 
 
       Predicted Death  
  No  Yes   All 
 --------------------------------------------------------- 
 No  837  (98.5%)       13   850 
Death?     
 Yes    82     68 (45.3%)   150  
 --------------------------------------------------------- 
 All  919     81 1000 
 
 
Death: p > 0.4 
 
       Predicted Death  
  No  Yes   All 
 --------------------------------------------------------- 
 No  829  (97.5%)       21   850 
Death?     
 Yes    71     79 (52.7.3%)   150  
 --------------------------------------------------------- 
 All  900  100 1000 
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TBSA  +  Flame 
 
model2 <- glm(Death ~ TBSA + Flame,  
          binomial, burn)         
 
model2 
 
 

Coefficients: 
(Intercept)         TBSA        Flame   
   -4.10581      0.07812      1.26716   
 
 
 

 

 P(Y = 1)�   =    p̂  =    
1+

- 4.105814 + 0.078119TBSA + 1.267158Flame

- 4.105814 + 0.078119TBSA + 1.267158Flame
e

e
 

 
 
b1  =  0.07812       eb1  =    e0.07812   =   1.0813 

 
 
Adj_OR for TBSA  =  1.0813 
 
 
 
b2  =  1.26716       eb2  =    e1.26716   =   3.5508 

 
 
Adj_OR for Flame  =  3.5508 
 


TBSA  +  Flame



model2 <- glm(Death ~ TBSA + Flame, 

          binomial, burn)        



model2





Coefficients:

(Intercept)         TBSA        Flame  

   -4.10581      0.07812      1.26716  













  =     =    
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x <- seq(1,100) 

z1 <-  exp(-4.105814 + 0.078119*x) 

y1 <- z1/(z1  + z1) 

z2 <- exp(-2.838664 + 0.078119*x) 

y2 <- z2/(1 + z2) 

plot(y ~ x, col = "red", type = "l",  

      main = "Plot of P(Y = 1) against TBSA and Flame",  

      xlab = "TBSA",  

      ylab = "P(Y = 1)") 

lines(x, y2, col = "blue") 

text(18, 0.6, "Flame Yes", col = "blue") 

text(58, 0.4, "Flame No", col = "red") 

 
 


x <- seq(1,100)

z1 <-  exp(-4.105814 + 0.078119*x)

y1 <- z1/(z1  + z1)

z2 <- exp(-2.838664 + 0.078119*x)

y2 <- z2/(1 + z2)

plot(y ~ x, col = "red", type = "l", 

      main = "Plot of P(Y = 1) against TBSA and Flame", 

      xlab = "TBSA", 

      ylab = "P(Y = 1)")

lines(x, y2, col = "blue")

text(18, 0.6, "Flame Yes", col = "blue")

text(58, 0.4, "Flame No", col = "red")
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For the burn data, this is the ‘best’ model 
 
model11 <- glm(Death ~ Age  + Race + TBSA + INH_INJ +  
Age:INH_INJ, binomial, burn) 
 

Classification Table 
        

                 Actual 

 

Death 

 

  No  Yes   All 

 --------------------------------------------------------------------------  

Predicted No  824  (96.9%)         47   871 

Death?     

 Yes    26      103 (68.7%)   129  

 --------------------------------------------------------------------------  

 All  850       150 1000 
 

sensitivity   =  P(Ŷ  =  1 | Y  =  1)   =  0.687 
                    =    proportion of deaths that are correctly  
                          identified as deaths.                                                                    
 

specificity  =  P(Ŷ  =  0 | Y  =  0)    =  0.969 
                   =   proportion of survives that are correctly       
                        identified as survives. 


For the burn data, this is the ‘best’ model



model11 <- glm(Death ~ Age  + Race + TBSA + INH_INJ +  Age:INH_INJ, binomial, burn)
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For the burn data, this is the ‘best’ model 
 
model11 <- glm(Death ~ Age  + Race + TBSA + INH_INJ +  
Age:INH_INJ, binomial, burn) 
 

Classification Table 
        

                 Actual 

 

Death 

 

  No  Yes   All 

 --------------------------------------------------------------------------  

Predicted No  824  (96.9%)         47   871 

Death?     

 Yes    26      103 (68.7%)   129  

 --------------------------------------------------------------------------  

 All  850       150 1000 
 

sensitivity   =  P(Ŷ  =  1 | Y  =  1)   =  0.687 
                    =    proportion of deaths that are correctly  
                          identified as deaths.                                                                    
 

specificity  =  P(Ŷ  =  0 | Y  =  0)    =  0.969 
                   =   proportion of survives that are correctly       
                        identified as survives. 


For the burn data, this is the ‘best’ model



model11 <- glm(Death ~ Age  + Race + TBSA + INH_INJ +  Age:INH_INJ, binomial, burn)
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burnss 

                 tpr          fpr    
   threshhold sensitivity  specificity 
 1      0           0           1.00  
 2      0.100       0.799       0.807 
 3      0.200       0.921       0.653 
 4      0.300       0.960       0.593 
 5      0.400       0.975       0.527 
 6      0.500       0.985       0.453 
 7      0.600       0.985       0.423 
 8      0.700       0.985       0.367 
 9      0.800       0.987       0.307 
10      0.900       0.995       0.267 
11      1.00        1.00        0  
 
 
It is common to construct what we call an ROC curve 
with this type of data. ROC stands for Receiver Operator 
Characteristic. The curve is simply a plot of the sensitivity 
values against 1 – specificity. Sensitivity is the true 
positive rate (tpr) and 1 – specificity is the false positive 
rate (fpr).  


burnss

                 tpr          fpr   

   threshhold sensitivity  specificity

 1      0           0           1.00 

 2      0.100       0.799       0.807

 3      0.200       0.921       0.653

 4      0.300       0.960       0.593

 5      0.400       0.975       0.527

 6      0.500       0.985       0.453

 7      0.600       0.985       0.423

 8      0.700       0.985       0.367

 9      0.800       0.987       0.307

10      0.900       0.995       0.267

11      1.00        1.00        0 





It is common to construct what we call an ROC curve with this type of data. ROC stands for Receiver Operator Characteristic. The curve is simply a plot of the sensitivity values against 1 – specificity. Sensitivity is the true positive rate (tpr) and 1 – specificity is the false positive rate (fpr). 
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tpr <- burnss$sensitivity 
fpr <- 1 - burnss$specificity 
 
plot(tpr ~ fpr, type = "l", col = "red",   
 main = "ROC curve for burn data") 
   
abline(0, 1, col = "blue") 
abline(h = 0, lty = 1) 

 

 
The closer the plot is to the upper top left-hand corner the 
more accurate the procedure. The point that lies closest to 
the upper left-hand corner is usually chosen as the cutoff 
point that maximizes both sensitivity and specificity 
simultaneously. The blue line corresponds to a procedure 
that gives negative and positive results by chance alone; 
such a test has no inherent value.  


tpr <- burnss$sensitivity

fpr <- 1 - burnss$specificity



plot(tpr ~ fpr, type = "l", col = "red",  

 main = "ROC curve for burn data")

  

abline(0, 1, col = "blue")

abline(h = 0, lty = 1)



[image: ]

The closer the plot is to the upper top left-hand corner the more accurate the procedure. The point that lies closest to the upper left-hand corner is usually chosen as the cutoff point that maximizes both sensitivity and specificity simultaneously. The blue line corresponds to a procedure that gives negative and positive results by chance alone; such a test has no inherent value. 
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The area under the ROC curve (c = 0.852) has a nice 
interpretation. Suppose we randomly select one patient 
known to have died and randomly select one patient 
known to have survived.  The area under the ROC curve 
(c = 0.852) is the probability that the model correctly 
identifies the two patients. 
The area under the blue line is 0.5. 
 

There are several methods for computing the area under 
the curve (c = 0.852) . The code below will do the job. 
 
t <- tpr; f <- fpr 
 
k <- nrow(s) -1 
 
x <- numeric(k) 
for (i in 1:k) 
{ 
   x[i] <- .5*(t[i] + t[i+1])*(f[i + 1] - f[i]) 
} 
Area <- sum(x) 
Area 
[1] 0.8520811 


The area under the ROC curve (c = 0.852) has a nice interpretation. Suppose we randomly select one patient known to have died and randomly select one patient known to have survived.  The area under the ROC curve (c = 0.852) is the probability that the model correctly identifies the two patients.

The area under the blue line is 0.5.



There are several methods for computing the area under the curve (c = 0.852) . The code below will do the job.



t <- tpr; f <- fpr



k <- nrow(s) -1



x <- numeric(k)

for (i in 1:k)

{

   x[i] <- .5*(t[i] + t[i+1])*(f[i + 1] - f[i])

}

Area <- sum(x)

Area

[1] 0.8520811
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2. Inferential Aspects of Logistic Regression 


2. Inferential Aspects of Logistic Regression
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 Model   Odds ratio  
 
Population 
 

 

P(Y  = 1)  =  
0 1

0 1

  β  +  β X

β  +  β X
e

1+e
 

 

 
  OR = 1βe  

Sample P(Y = 1)�   =  
0 1

0 1

  b  +  b X

b  +  b X
e

1+e
 

 

    
   OR � = 1be  

 
For our example X is Flame or TBSA 
 
• b0 is an estimate for β0 
 
• b1 is an estimate for β1 
 
• OR � = 1be   is an estimate for OR = 1βe  
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For our example X is Flame or TBSA
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Inferential Tasks in Logistic Regression 
 
 

1. Confidence interval for OR = eβ1 in the case of a 
single predictor and for adjOR1, adjOR2, … in 
the case of multiple predictors. 

 
 

2. Test H0:OR = eβ1  = 1   against  HA: OR = eβ1  ≠ 
1    

 
 
 

3. With multiple predictors, we need methods that 
allow us to test for the benefit of adding a 
variable or a block of variables to an existing 
model. 


Inferential Tasks in Logistic Regression





1. Confidence interval for OR = eβ1 in the case of a single predictor and for adjOR1, adjOR2, … in the case of multiple predictors.





2. Test H0:OR = eβ1  = 1   against  HA: OR = eβ1  ≠ 1   







3. With multiple predictors, we need methods that allow us to test for the benefit of adding a variable or a block of variables to an existing model.
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In logistic regression inferences can be based on 
either of two processes: 
 
 
1. For large n, in repeated samples, the distribution 
of b1 is approximately Normal with a mean of β1. 

 
 
2. Inferences can more reliably be based on the 
likelihood function—the probability of getting our 
sample. 


In logistic regression inferences can be based on either of two processes:





1. For large n, in repeated samples, the distribution of b1 is approximately Normal with a mean of β1.





2. Inferences can more reliably be based on the likelihood function—the probability of getting our sample.
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Using the Approximate Normality of b1, b2, … 
 
 
model <- glm(Death ~ TBSA, data = burn,  
 family = binomial) 
model 
 
 (Intercept)         TBSA   
   -3.34511      0.08537   
 
 
summary(model) 
 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -3.345107   0.175648  -19.04   <2e-16  
TBSA         0.085367   0.006956   12.27   <2e-16  

 
A 95% confidence interval for β1 is 
 

0.08537  ±  1.96*0.006956   →  0.0717   to  0.0990 
 
A 95% confidence interval for OR  =  eβ1 is 
 

e0.07174   to  e0.0990  →   1.0743  to  1.104 
 
confint.default(model) 
                 2.5 %     97.5 % 
(Intercept) -3.68937118 -3.0008438 
TBSA         0.07173324  0.0990003 


Using the Approximate Normality of b1, b2, …





model <- glm(Death ~ TBSA, data = burn, 

 family = binomial)

model



 (Intercept)         TBSA  

   -3.34511      0.08537  





summary(model)





Coefficients:

             Estimate Std. Error z value Pr(>|z|)    

(Intercept) -3.345107   0.175648  -19.04   <2e-16 

TBSA         0.085367   0.006956   12.27   <2e-16 



A 95% confidence interval for β1 is



0.08537  ±  1.96*0.006956     0.0717   to  0.0990



A 95% confidence interval for OR  =  eβ1 is



e0.07174   to  e0.0990     1.0743  to  1.104



confint.default(model)

                 2.5 %     97.5 %

(Intercept) -3.68937118 -3.0008438

TBSA         0.07173324  0.0990003
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The 95% confidence interval,1.0743  to 1.104 is 
entirely above 1 and so we can reject the null 
hypothesis (H0: OR = 1) at the 5% level of 
significance. The data suggest that the OR > 1. 
 
If you prefer to get a p-value, you can use the 
summary output again. 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -3.345107   0.175648  -19.04   <2e-16  
TBSA         0.085367   0.006956   12.27   <2e-16 

 

 

Z  =    1

1

b - 0
SE(b )

     =   0.085367
0.006956

     =   12.27 

 
p-value  =  2*P(Z > 12.27)  =  0 
 


The 95% confidence interval,1.0743  to 1.104 is entirely above 1 and so we can reject the null hypothesis (H0: OR = 1) at the 5% level of significance. The data suggest that the OR > 1.



If you prefer to get a p-value, you can use the summary output again.



Coefficients:

             Estimate Std. Error z value Pr(>|z|)    

(Intercept) -3.345107   0.175648  -19.04   <2e-16 

TBSA         0.085367   0.006956   12.27   <2e-16









Z  =         =        =   12.27



p-value  =  2*P(Z > 12.27)  =  0
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model <- glm(Death ~ TBSA + Flame, data = burn,  
  family = binomial) 
summary(model) 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.105814   0.280726 -14.626  < 2e-16  
TBSA         0.078119   0.006928  11.276  < 2e-16  
Flame        1.267158   0.289756   4.373 1.22e-05  
 
confint.default(model) 
                  2.5 %      97.5 % 
(Intercept) -4.65602741 -3.55559976 
TBSA         0.06454081  0.09169658 
Flame        0.69924753  1.83506824 

 
A 95% confidence interval for adj_ORTBSA is: 
 

e0.06454081  to  e0.09169658  →    1.067   to  1.096 
 
A 95% confidence interval for adj_ORFlame is: 
 

e0.69924753   to  e1.83506824  →    2.01   to  6.27 


model <- glm(Death ~ TBSA + Flame, data = burn, 

  family = binomial)

summary(model)



Coefficients:

             Estimate Std. Error z value Pr(>|z|)    

(Intercept) -4.105814   0.280726 -14.626  < 2e-16 

TBSA         0.078119   0.006928  11.276  < 2e-16 

Flame        1.267158   0.289756   4.373 1.22e-05 



confint.default(model)

                  2.5 %      97.5 %

(Intercept) -4.65602741 -3.55559976

TBSA         0.06454081  0.09169658

Flame        0.69924753  1.83506824



A 95% confidence interval for adj_ORTBSA is:



e0.06454081  to  e0.09169658      1.067   to  1.096



A 95% confidence interval for adj_ORFlame is:



e0.69924753   to  e1.83506824      2.01   to  6.27
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In the case of multiple predictors, the Z-test can be 
used to test for the benefit of adding a new variable 
to an existing model. 
 
Is it worth adding the variable Flame to a model 
predicting the probability of death from only TBSA? 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.105814   0.280726 -14.626  < 2e-16  
TBSA         0.078119   0.006928  11.276  < 2e-16  
Flame        1.267158   0.289756   4.373 1.22e-05  

 
The p-value is the probability of getting a sample 
slope for Flame at least as large as 1.267 (in either 
direction) if βFlame = 0 in a model with TBSA. 
 
p-value =  2*P(bFlame > 1.267)    
 
             =  2*P(Z > 4.373)   =  0.0000122. 


In the case of multiple predictors, the Z-test can be used to test for the benefit of adding a new variable to an existing model.



Is it worth adding the variable Flame to a model predicting the probability of death from only TBSA?



Coefficients:

             Estimate Std. Error z value Pr(>|z|)    

(Intercept) -4.105814   0.280726 -14.626  < 2e-16 

TBSA         0.078119   0.006928  11.276  < 2e-16 

Flame        1.267158   0.289756   4.373 1.22e-05 



The p-value is the probability of getting a sample slope for Flame at least as large as 1.267 (in either direction) if βFlame = 0 in a model with TBSA.



p-value =  2*P(bFlame > 1.267)   



             =  2*P(Z > 4.373)   =  0.0000122.
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Inferences using the Likelihood Function 
 
In logistic regression we estimate the coefficients β0 
and β1 using a method called Maximum Likelihood 
Estimation (MLE). A likelihood function expresses 
the probability of obtaining the observed sample as 
a function of β0 and β1. The method of MLE asks: 
what values for β0 and β1 make our sample most 
likely? 
 
The simplest situation to illustrate MLE is for the null 
case where p = P(Y = 1) is independent of X. That is 
 

p  =  P(Y = 1)   =  
0

0

β

β
e

1 + e
 

1  -  p  =  P(Y  = 0)  =   
0β

1
1 + e

 

 
Then, assuming independent observations 

L(β0)   =  
0

0

150β

β
e( )

1 + e
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850

β

1( )
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         Likelihood   


Inferences using the Likelihood Function



In logistic regression we estimate the coefficients β0 and β1 using a method called Maximum Likelihood Estimation (MLE). A likelihood function expresses the probability of obtaining the observed sample as a function of β0 and β1. The method of MLE asks: what values for β0 and β1 make our sample most likely?



The simplest situation to illustrate MLE is for the null case where p = P(Y = 1) is independent of X. That is





p  =  P(Y = 1)   =  



1  -  p  =  P(Y  = 0)  =   



Then, assuming independent observations
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L0(β0)  =  loge(L(β0))  =  150*β0    -1000*loge(1  + 0βe  ) 
 
   
                                             Log Likelihood 
 
We seek the value for β0 that maximizes L0(β0): 
 

o

0

dL
dβ

   =   150   -  1000
0

0

β

β
e

1 + e
    =   0      (Calculus)  

 

0β̂   =  b0  =  -1.7346    

 

0be    =  e-1.7346  =     0.17647    =   150
850

    =    Ô  

 

P(Y = 1)�      =    
-1.7346

-1.7346
e

1 + e
   =  0.15    =    150

1000
   =   p̂  




L0(β0)  =  loge(L(β0))  =  150*β0    -1000*loge(1  +  )



  

                                             Log Likelihood



We seek the value for β0 that maximizes L0(β0):







   =   150   -  1000	   =   0      (Calculus) 





  =  b0  =  -1.7346			









   =  e-1.7346  =     0.17647    =       =    









     =       =  0.15    =       =   
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For confidence intervals for the population odds 
ratio(s) we can use the confint command. This yields 
the profile-likelihood intervals. 
 
confint(model) 
Waiting for profiling to be done... 
                  2.5 %     97.5 % 
(Intercept) -4.69616358 -3.5907614 
TBSA         0.06518979  0.0923746 
Flame        0.71873320  1.8604831 

 
A 95% confidence interval for adj_ORTBSA is: 
 

e0.06518979  to  e0.0923746  →    1.067   to  1.097 
 
(normal case, 1.067 to 1.096) 
 
 
A 95% confidence interval for adj_ORFlame is: 
 

e0.71873320   to  e1.8604831  →    2.05   to  6.42 
 
(normal case, 2.01   to  6.27) 


For confidence intervals for the population odds ratio(s) we can use the confint command. This yields the profile-likelihood intervals.



confint(model)

Waiting for profiling to be done...

                  2.5 %     97.5 %

(Intercept) -4.69616358 -3.5907614

TBSA         0.06518979  0.0923746

Flame        0.71873320  1.8604831



A 95% confidence interval for adj_ORTBSA is:



e0.06518979  to  e0.0923746      1.067   to  1.097



(normal case, 1.067 to 1.096)





A 95% confidence interval for adj_ORFlame is:



e0.71873320   to  e1.8604831      2.05   to  6.42



(normal case, 2.01   to  6.27)
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The Deviance and the Drop-in-Deviance Test 
 
In logistic regression the deviance plays roughly the 
same role as the residual sum of squares in linear 
regression. 
 
The deviance associated with a logistic regression 
model is 
 
D  =  -2 *loge(likelihood of the fitted model) 
 
 
For our null model   

Likelihood  =  L(b0)   =  
0

0

150b

b
e( )

1 + e
 

0

850

b

1( )
1 + e

    

 
     

               =     (0.15150 )(0.85850) 
 
D  =  -2*loge [(0.15150 )(0.85850)] 
 
     = -2*[ 150 loge(0.15)  +  850 loge(0.85) ] 
 
     =  845.42  
                                          Null deviance 


The Deviance and the Drop-in-Deviance Test



In logistic regression the deviance plays roughly the same role as the residual sum of squares in linear regression.



		The deviance associated with a logistic regression model is



D  =  -2 *loge(likelihood of the fitted model)









For our null model  





Likelihood  =  L(b0)   =      



    

               =     (0.15150 )(0.85850)



D  =  -2*loge [(0.15150 )(0.85850)]



     = -2*[ 150 loge(0.15)  +  850 loge(0.85) ]



     =  845.42 

                                          Null deviance
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model <- glm(Death ~ TBSA, binomial, burn) 
summary(model) 
 
Null deviance: 845.42  on 999 degrees of freedom 
Residual deviance: 538.65 on 998  degrees of freedom 
 
AIC: 542.65 
 
Number of Fisher Scoring iterations: 5 
 
 
anova(model, test = "Chisq") 
 
     Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     
NULL                   999     845.42               
TBSA  1   306.76       998     538.65 < 2.2e-16  
 
 
 
 
Linear Regression   Logistic Regression 
  
SS          df   Deviance  df    p-value  
----------------   ----------------------- 
SSReg     1   306.76     1    0.0000 
  
SSRes   n - 2   538.65   998 
  
SSTot   n - 1   845.42   999 
 
 
 

∑ (Y   -   Y )2                  null deviance 
 
 

H0:βTBSA  = 0    HA:βTBSA  ≠ 0     
 
p-value  =  P( 1

2χ   >  306.76)  =  0 


model <- glm(Death ~ TBSA, binomial, burn)

summary(model)



Null deviance: 845.42  on 999 degrees of freedom

Residual deviance: 538.65 on 998  degrees of freedom



AIC: 542.65



Number of Fisher Scoring iterations: 5





anova(model, test = "Chisq")



     Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    

NULL                   999     845.42              

TBSA  1   306.76       998     538.65 < 2.2e-16 









		Linear Regression
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		SSReg     1
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The Drop-in-deviance Chi-Square test can be used to 
compare two models so long as one is nested within the 
other. Model 1 is nested within model 2 if the predictor 
variables in model 1 are a subset of those in Model 2. 
Here are several examples. 
Example 1:  Is it worth adding the variable Flame to a 
model predicting P(Y = 1) from TBSA? 
1. Z test 
 
model2 <- glm(Death ~ TBSA + Flame, binomial,      
          burn) 
summary(model2) 
 
 

Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.105814   0.280726 -14.626  < 2e-16  
TBSA         0.078119   0.006928  11.276  < 2e-16  
Flame        1.267158   0.289756   4.373 1.22e-05  
 

 
2. Drop-in-deviance Chi-Square test 
 
model1 <- glm(Death ~ TBSA, binomial, burn) 
anova(model1, model2, test = "Chisq") 
 

Analysis of Deviance Table 
 
Model 1: Death ~ TBSA 
Model 2: Death ~ TBSA + Flame 
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     
1       998     538.65                           
2       997     516.68  1   21.978 2.758e-06  


The Drop-in-deviance Chi-Square test can be used to compare two models so long as one is nested within the other. Model 1 is nested within model 2 if the predictor variables in model 1 are a subset of those in Model 2.

Here are several examples.

Example 1:  Is it worth adding the variable Flame to a model predicting P(Y = 1) from TBSA?

1. Z test



model2 <- glm(Death ~ TBSA + Flame, binomial,     

          burn)

summary(model2)





Coefficients:

             Estimate Std. Error z value Pr(>|z|)    

(Intercept) -4.105814   0.280726 -14.626  < 2e-16 

TBSA         0.078119   0.006928  11.276  < 2e-16 

Flame        1.267158   0.289756   4.373 1.22e-05 





2. Drop-in-deviance Chi-Square test



model1 <- glm(Death ~ TBSA, binomial, burn)

anova(model1, model2, test = "Chisq")



Analysis of Deviance Table



Model 1: Death ~ TBSA

Model 2: Death ~ TBSA + Flame

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1       998     538.65                          

2       997     516.68  1   21.978 2.758e-06 
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Example 2:  Our current model (2) predicts P(Y = 1) 
from TBSA and Flame. Is it worth adding the remaining 
four potential predictors Age, Gender, Race, and 
INH_INJ? 
 
model3 <- glm(Death ~ TBSA + Flame + Age +  
      Gender + Race + INH_INJ, binomial, burn) 

 
anova(model2, model3, test = "Chisq") 
 

Analysis of Deviance Table 
 
Model 1: Death ~ TBSA + Flame 
Model 2: Death ~ TBSA + Flame + Age + Gender + Race 
+ INH_INJ 
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     
1       997     516.68                           
2       993     336.46  4   180.21 < 2.2e-16 *** 


Example 2:  Our current model (2) predicts P(Y = 1) from TBSA and Flame. Is it worth adding the remaining four potential predictors Age, Gender, Race, and INH_INJ?



model3 <- glm(Death ~ TBSA + Flame + Age + 

      Gender + Race + INH_INJ, binomial, burn)



anova(model2, model3, test = "Chisq")



Analysis of Deviance Table



Model 1: Death ~ TBSA + Flame

Model 2: Death ~ TBSA + Flame + Age + Gender + Race + INH_INJ

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1       997     516.68                          

2       993     336.46  4   180.21 < 2.2e-16 ***
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Building a Logistic Regression Model 
 
modelAge <- glm(Death ~Age, binomial, burn) 
AIC(modelAge) 
[1] 674.2585 
 

modelGender <- glm(Death ~Gender, binomial,  
burn) 
AIC(modelGender) 
[1] 848.5809 
 

: : : : : : : : : : 
 
modelflame <- glm(Death ~ Flame, binomial, burn) 
AIC(modelflame) 
[1] 759.4591 

 
 
 Variable  AIC 
 ------------------------------- 
 Age 674.3 
 Gender 848.6 
 Race 848.0 
√ TBSA 542.7 
 INH_INJ 695.5 
 Flame 759.5 

 

 

Now consider the performance (using AIC) of all 
pairs of variables including TBSA. ….. 


Building a Logistic Regression Model



modelAge <- glm(Death ~Age, binomial, burn)

AIC(modelAge)

[1] 674.2585



modelGender <- glm(Death ~Gender, binomial, 

burn)

AIC(modelGender)

[1] 848.5809



:	:	:	:	:	:	:	:	:	:



modelflame <- glm(Death ~ Flame, binomial, burn)

AIC(modelflame)

[1] 759.4591





		

		Variable

		 AIC



		

		-------------------------------



		

		Age

		674.3



		

		Gender

		848.6



		

		Race

		848.0



		

		TBSA

		542.7



		

		INH_INJ

		695.5



		

		Flame

		759.5









Now consider the performance (using AIC) of all pairs of variables including TBSA. …..
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The Complete Model 
 
 
 

TBSA_Group = 1 if TBSA ≥  50 

 

                       = 0 otherwise 

 

 

Age_Group = 1  if Age ≥  32     [ =  median Age]  
 

                    = 0  otherwise 

 
 
m <- glm(Death ~ Gender + Race + INH_INJ + 
 Flame + TBSA_Group + Age_Group, binomial, burn) 
 
options(digits = 2) 
 

Here are the sample slopes: 
 
b <- coef(m) 
 
b 
(Intercept) Gender  Race  INH_INJ  Flame  TBSA_Group   Age_Group  
      -4.51  -0.47 -0.18     1.76   1.04        3.13        2.44  

 
 

Here are the sample adjusted odds ratios: 
 
 
OR <- exp(b) 
OR 
(Intercept) Gender  Race  INH_INJ  Flame  TBSA_Group   Age_Group  
      0.011  0.626 0.836    5.805  2.838      22.872      11.444  


The Complete Model







TBSA_Group = 1 if TBSA   50



                       = 0 otherwise





Age_Group = 1  if Age   32     [ =  median Age] 



                    = 0  otherwise





m <- glm(Death ~ Gender + Race + INH_INJ +

 Flame + TBSA_Group + Age_Group, binomial, burn)



options(digits = 2)



Here are the sample slopes:



b <- coef(m)



b

(Intercept) Gender  Race  INH_INJ  Flame  TBSA_Group   Age_Group 

      -4.51  -0.47 -0.18     1.76   1.04        3.13        2.44 





Here are the sample adjusted odds ratios:





OR <- exp(b)

OR

(Intercept) Gender  Race  INH_INJ  Flame  TBSA_Group   Age_Group 

      0.011  0.626 0.836    5.805  2.838      22.872      11.444 
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Here are the 95% CI’s for the β’s 
 
c <- confint(m) 
Waiting for profiling to be done... 
c 
            2.5 % 97.5 % 
(Intercept) -5.40 -3.726 
Gender      -0.95  0.019 
Race        -0.65  0.301 
INH_INJ      1.21  2.315 
Flame        0.48  1.645 
TBSA_Group   2.37  3.978 
Age_Group    1.79  3.172 
 
 

Here are the 95% CI’s for the adjusted OR’s 
 
CI <- exp(c) 
CI 
             2.5 % 97.5 % 
(Intercept)  0.0045  0.024 
Gender       0.3869  1.019 
Race         0.5196  1.351 
INH_INJ      3.3562 10.128 
Flame        1.6172  5.181 
TBSA_Group  10.6780 53.436 
Age_Group    6.0115 23.846 
 
 
 
Null deviance: 845.42  on 999  degrees of freedom 
Residual deviance: 504.49 on 993 degrees of freedom 
AIC: 518.5 

 
D0  -  D6  =  845.42  -  504.49  =  340.93 
 

This value can be compared to the Chi-Square  
distribution with 6 degrees of freedom. 


Here are the 95% CI’s for the β’s



c <- confint(m)

Waiting for profiling to be done...

c

            2.5 % 97.5 %

(Intercept) -5.40 -3.726

Gender      -0.95  0.019

Race        -0.65  0.301

INH_INJ      1.21  2.315

Flame        0.48  1.645

TBSA_Group   2.37  3.978

Age_Group    1.79  3.172





Here are the 95% CI’s for the adjusted OR’s



CI <- exp(c)

CI

             2.5 % 97.5 %

(Intercept)  0.0045  0.024

Gender       0.3869  1.019

Race         0.5196  1.351

INH_INJ      3.3562 10.128

Flame        1.6172  5.181

TBSA_Group  10.6780 53.436

Age_Group    6.0115 23.846







Null deviance: 845.42  on 999  degrees of freedom

Residual deviance: 504.49 on 993 degrees of freedom

AIC: 518.5



D0  -  D6  =  845.42  -  504.49  =  340.93



This value can be compared to the Chi-Square 

distribution with 6 degrees of freedom.
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Variable Slope  Adj_OR     95% CI 
-------------------------------------------------------------------- 
Gender - 0.468    0.626 

 
    0.387 - 1.019 
 

Race - 0.179    0.836 
 

    0.520 - 1.351 
 

INH_INJ   1.759    5.807 
 

    3.356 -10.128 
 

Flame   1.043    2.838 
 

    1.617 - 5.181 
 

TBSA_Group   3.130  22.874 
 

  10.678 - 53.436 
 

Age_Group   2.438  11.450     6.012 - 23.846 
 

 


		Variable

		Slope

		 Adj_OR

		    95% CI



		--------------------------------------------------------------------



		Gender

		- 0.468

		   0.626



		    0.387 - 1.019





		Race

		- 0.179

		   0.836



		    0.520 - 1.351





		INH_INJ

		  1.759

		   5.807



		    3.356 -10.128





		Flame

		  1.043

		   2.838



		    1.617 - 5.181





		TBSA_Group

		  3.130

		 22.874



		  10.678 - 53.436





		Age_Group

		  2.438

		 11.450

		    6.012 - 23.846
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Conditions for Inference in Logistic Regression 
 

(a) Conditions we don’t need 
 

• No more condition that the Y values are 
approximately normal. Why not? 

 

• No more condition that the standard deviation of 
the Ys not vary with the Xs. 

 
(b) Conditions we do need 
 

• We assume a linear relationship between the X 
variables and logit of Y 
 

L =  loge(
ˆ

ˆ
p

1- p
) =  b0  +  b1X1  +  b2X2  +  … 

It is hard to check unless n is very large. 
 

• We assume that the observations represent a 
random sample from some well-defined 
population. 


Conditions for Inference in Logistic Regression



(a) Conditions we don’t need



· No more condition that the Y values are approximately normal. Why not?



· No more condition that the standard deviation of the Ys not vary with the Xs.



(b) Conditions we do need



· We assume a linear relationship between the X variables and logit of Y





L =  loge() =  b0  +  b1X1  +  b2X2  +  …

It is hard to check unless n is very large.



· We assume that the observations represent a random sample from some well-defined population.
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Sample Size and Model Complexity in Logistic 
Regression 
 
Here is a popular guideline for sample size in logistic 
regression 
 
Suppose p0 is the proportion of 0’s in our sample 
and p1 is the proportion of 1’s.  
 
Call p the smaller of p0 and p1. 
 
Call K the number of predictors (explanatory 
variables) in our model 
 
Then the minimum sample size needed is  
 
n  =  10*K/p 
 

 

For the burn data, p0 = 0.85 and p1 = 0.15, so p = 
0.15. 
 
With K = 6,  n = 10*6/0.15   =  400 


Sample Size and Model Complexity in Logistic Regression



Here is a popular guideline for sample size in logistic regression



Suppose p0 is the proportion of 0’s in our sample and p1 is the proportion of 1’s. 



Call p the smaller of p0 and p1.



Call K the number of predictors (explanatory variables) in our model



Then the minimum sample size needed is 



n  =  10*K/p





For the burn data, p0 = 0.85 and p1 = 0.15, so p = 0.15.



With K = 6,  n = 10*6/0.15   =  400
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