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Statistical Techniques in the Medical Literature 
Switzer and Horton (2007)* counted how often various statistical 

techniques are used in articles in The New England Journal of Medicine. 

 

Technique 1978-

1979 

1989 2004-

2005 

---------------------------------------------------------------------- 

None/means/Stdevs   27   12   13 

t-tests   44   39   26 

Contingency Tables   27   36   53 

Non-parametric tests   11   21   27 

Odds ratios, Logistic 

regression 

    9   22   35 

Pearson correlation   12   19     3 

Simple linear regression     8     9     6 

ANOVA     8   20   16 

Multiple regression     5   14   51 

Multiple comparisons     3     9   23 

Power     3     3   39 
*Switzer, S, and Horton, N, What your Doctor Should Know about 

Statistics, Chance, Vol 20, No 1, 2007. 



Learning Objectives 

 

 

Participants will be able to perform the process of 

constructing useful linear and logistic regression 

models 

 

 

Participants will be able to interpret and draw 

conclusions from linear regression and logistic 

regression output. 

 

 

Participants will understand the conditions for 

inference in linear and logistic regression and the 

role of diagnostics in checking these conditions. 

 



Foundations of Correlation and 

Regression 

 

 Descriptive Aspects of Correlation and 

Simple Linear Regression 

 

 

 A Population Model for Regression 

 

 

 Estimation and Hypothesis Tests in 

Regression 

 

 

 Predictions with Regression 

 

 

 Computer Intensive Methods in 

Regression 



The hd Data Set 
 

The hd data are from a study of 32 middle-aged 

patients with heart disease. The data is given below. 

The object of the exercise is to develop a model to 

predict systolic blood pressure (SBP) from one (and 

later more than one) of the other variables in the 

data set. The variable Smoke takes the value 1 for a 

smoker and the value 0 for a non-smoker. 
 

         Y      X 
Pat  SBP  Age   BMI  Height  Smoke  Race 

  1  135   45  22.8      70      0  Black 

  2  122   41  24.7      67      0  White 

  3  130   49  23.9      69      0  Black 

  4  148   52  27.4      70      0  White 

  5  146   54  23.3      71      1  White 

  6  129   47  22.3      76      1  Black 

  7  162   60  26.9      79      1  White 

  8  160   48  26.6      67      1  White 

  9  144   44  20.0      75      0  White 

 10  180   64  32.1      74      1  Hispanic 

 11  166   59  28.0      70      1  White 

 12  138   51  28.9      73      1  White 

 13  152   64  29.3      64      1  White 

 14  138   56  26.9      71      0  White 

 15  140   54  26.4      72      1  White 

 16  134   50  23.3      67      1  Hispanic 

 17  145   49  25.3      74      1  Hispanic 

 :    :    :   :         :       :   : 

 30  170   63  29.4      81      1  Black 

 31  152   62  28.5      69      0  White 

 32  164   65  28.7      66      1  Hispanic 

        ----- 

 Y=144.53 

 

Pat  SBP   

  1  135    

  2  122    

  3  130    

  4  148    

  5  146   

  6  129    

  7  162    

  8  160   

  9  144    

 10  180    

 11  166    

 12  ?    

 13  152    

 14  138    

 15  140    

 16  134    

 17  145    

 :    :    

 30  170    

 31  152    

 32  164   

 

Suppose one of the 32 Y-values is missing. In the 

absence of X, how should we estimate this missing 

value? 
 



model <- lm(SBP ~ Age, hd) 
plot(SBP ~ Age, hd,  
   main = "Scatterplot of SBP against Age") 
abline(model, col = "red") 
 

 
 
model 
 

Coefficients: 
(Intercept)          Age   
     59.092        1.605   
 

Ŷ   =   59.09  +  1.605X 

 

SBP   =   59.09  +  1.605Age 

 
 
cor(hd$SBP, hd$Age) 
[1] 0.7752041 
 
 

r  =  0.775   



For each patient we can compute: 
 

(i) the predicted or fitted value ( Ŷ ) and  

 

(ii) residual value is   e  = Y  -  Ŷ .   

 

 
Pat    SBP  Age 

  :          :    : 

  9    144   44 

  :          :    : 

 

Y  = 144 mm 
 

Ŷ  =   59.09   +   1.605 (44)  =  129.69 mm  

 

e  =    Y  -  Ŷ    =  144  -  129.69  =  14.31 mm 

 

Note that:      e  =  0         e    =    

 
  



fit<- fitted(model) 
res<- resid(model) 
newdf<- data.frame(hd$SBP,hd$Age,fit,res) 
newdf 
 

        Y          X        Ŷ        e = Y - Ŷ  

   hd.SBP hd.Age      fit        res 
1     135     45 131.2941   3.705875 
2     122     41 124.8761  -2.876125 
3     130     49 137.7121  -7.712125 
4     148     52 142.5256   5.474375 
5     146     54 145.7346   0.265375 
6     129     47 134.5031  -5.503125 
7     162     60 155.3616   6.638375 
8     160     48 136.1076  23.892375 
9     144     44 129.6896  14.310375 
10    180     64 161.7796  18.220375 
11    166     59 153.7571  12.242875 
12    138     51 140.9211  -2.921125 
13    152     64 161.7796  -9.779625 
14    138     56 148.9436 -10.943625 
15    140     54 145.7346  -5.734625 
16    134     50 139.3166  -5.316625 
17    145     49 137.7121   7.287875 
18    142     46 132.8986   9.101375 
19    135     57 150.5481 -15.548125 
20    142     56 148.9436  -6.943625 
21    150     56 148.9436   1.056375 
22    144     58 152.1526  -8.152625 
23    137     53 144.1301  -7.130125 
24    132     50 139.3166  -7.316625 
25    149     54 145.7346   3.265375 
26    132     48 136.1076  -4.107625 
27    120     43 128.0851  -8.085125 
28    126     43 128.0851  -2.085125 
29    161     63 160.1751   0.824875 
30    170     63 160.1751   9.824875 
31    152     62 158.5706  -6.570625 
32    164     65 163.3841   0.615875 
 

                            -------- 

                            0 
 



Analysis of Variance in Regression 

 

The basic idea in the ANOVA in regression is to 

break down a measure of the variability in SBP into 

(a) a component associated with its relationship to 

Age, and (b) a residual component associated with 

variables other than Age. 
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The patient, Albert, is 60 years old and has a SBP of 

Y = 162 mm. He has a predicted SBP of Ŷ  = 59.1 + 

1.60(60)  =  155.1 mm. 



 

 

 

 

 

 

 

 

 

Y = 162 

Ŷ = 155.1 
 

Y= 144.5 

 

 

 Y   -   Y       =     (Y  -  Ŷ )   +   ( Ŷ   -  Y ) 
 

 

 (Y   -   Y )
2
    =     (Y  -  Ŷ )

2
    +     ( Ŷ   -  Y )

2
       

                           

     SSTOT       SSRES         SSREG 



SSTOT (The ‘total’ sum of squares) is a measure of 

the variability in the Y’s. In fact, if you divide SSTOT 

by n – 1 you will have the variance of Y (the square 

of the standard deviation). So, SSTOT  =  (n – 1)SY
2
. 

It is important to note that the SSTOT depends only 

on the values for Y; the values for X have no effect 

on this quantity.  

 

 

SSRES is a measure of how spread out the points 

are around the regression line. The Y  - Ŷ  values are 

simply the residuals. So, SSRES is the sum of the 

squared residuals. The SSRES captures the degree 

of spread of the points around the line—the lack of 

fit of the regression line. 
 

 

SSREG captures how far the predicted values ( Ŷ ’s) 

are from Y . If we are not given the X values, our 

best guess for a new person’s Y value would be Y , 

the mean of the Y’s. So, think of SSREG as how 

much better off we are for knowing the X values. 



Graph A 
 

 

 

 (Y   -   Y )
2
    =     (Y  -  Ŷ )

2
    +     ( Ŷ   -  Y )

2
       

                           

 The Y’s will be close to the Ŷ ’s. 

 

The Ŷ ’s will be far from Y  

 

 

           SSTOT  SSRES      SSREG 
 

A    1000      50    950 
 



Graph B 
 

 
  

 (Y   -   Y )
2
    =     (Y  -  Ŷ )

2
    +     ( Ŷ   -  Y )

2
       

                           

 

The Y’s will be far from the Ŷ ’s. 

 

The Ŷ ’s will be close toY  
 

 

           SSTOT  SSRES      SSREG 
 

B    1000     950    50 



For the Age, SBP Data: 

 

 
                                                                 One variable 

 

Source of 

Variation 

Sum of 

Squares 

df Mean Square F p 

------------------------------------------------------------------------------------ 

Regression 3861.630     1 3861.630 45.177 0.000 

      

Residual 2564.338   30     85.478   

------------------------------------------------------------------------------------ 

Total 6425.969   31    
 

                                      n – 1 

 
R 

 
anova(model) 
Analysis of Variance Table 
 
Response: hd$SBP 
          Df Sum Sq Mean Sq F value    Pr(>F)     
hd$Age     1 3861.6  3861.6  45.177 1.894e-07  
Residuals 30 2564.3    85.5                       



The Coefficient of Determination (r
2
) 

 
> cor(hd$SBP, hd$Age) 
[1] 0.7752041 

 

 

r
2  

  =  (0.7752041)
2
   =  0.601 

 
Source of 

Variation 

Sum of 

Squares 

df Mean Square F p 

------------------------------------------------------------------------------------ 

Regression 3861.630     1 3861.630 45.177 0.000 

      

Residual 2564.338   30     85.478   

------------------------------------------------------------------------------------ 

Total 6425.969   31    

 

 

SSREG

SSTOT
   =   

3861.630

6425.969
   =   0.601 

 



 

 

r
2
   =  

SSREG

SSTOT
  

 

The value for r
2
 [100 r

2 
] is the proportion 

[percentage] of the variability in Y that can be 

‘associated with’ the linear relationship between Y 

and X. 

 

The value for r
2
 [100 r

2 
] is the proportion 

[percentage] of the variability in Y that can be 

‘associated with’ differences among the X values. 



 
The correlation between Y (SBP)  and  X (Age) is  

r =  0.775 
 

 
> cor(hd$SBP, hd$Age) 
[1] 0.7752041 
 

 
But notice also: 
 
 

 

> cor(hd$SBP, fit) 
[1] 0.7752041 
 
 

 

That is r(Y,Ŷ ) =  | r(Y, X) |  



Questions about the Population 
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SBP   =   59.09  +  1.605Age 

 

 

Our regression line is based on (what we assume is a 

random) sample of 32 patients with heart disease.  

 

1. Our data seems to suggest a positive, relationship 

between SBP and Age. But is the relationship statistically 

significant? That is, might these two variables be 

independent over the entire population and our data due 

simply to chance/sampling variability?  

 

2. How close is the sample slope (b1 = 1.605 mm) to the 

slope that we would get if we had access to all patients 

with heart disease? 

 

3. When we use the regression line to make predictions 

how accurate are these predictions?  



What might the ‘population’ look like? 

 

The population model specifies (a) the systematic (in 

this case, linear) relationship between Age (X) and 

mean SBP (Y), and (b) the nature of the scatter 

around that relationship. 
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Mean SBP  =  β0   +  β1Age  

 

SBP =    β0   +  β1Age   
  



The Population Model 

 

1. The linearity condition: there is a straight line 

relationship of the form µSBP  =  β0  +  β1Age 

between age of patient (X) and mean SBP (Y).  

 

2. The Normality condition: for any particular age, 

the distribution of SBP is Normal. 

 

3. The equal standard deviation condition: the 

standard deviation () of SBP is the same for each 

age. 

 

 
 



 

 
1. We estimate the (unknown) intercept of the 

population line, 0  by b0 = 59.09 mm.  

 

2. We estimate the (unknown) slope of the 

population line, 1 by b1 = 1.605 mm.  

 

3. We estimate 2 from the residuals. Specifically, 

our estimate of 2 is 

  

Se
2    =   

ˆ
2

(Y  -  Y)

n - 2


    =   


2

(e  -  e)

n - 2
      

 

         =  SSRES/(n – 2)   =   MSRES  =  85.478   

 
Source of 

Variation 

Sum of 

Squares 

df Mean Square F p 

------------------------------------------------------------------------------------ 

Regression 3861.630     1 3861.630 45.177 0.000 

      

Residual 2564.338   30     85.478   

------------------------------------------------------------------------------------ 

Total 6425.969   31    
 

We estimate  by σ̂  =  Se  =  85.478   =  9.245 mm. 
 

Se  is called the residual standard error. 



Testing for Zero Slope 

 

H0: 1   =  0 

 

If H0 is true: Y| x  = β0   +  β1X    = β0   +  (0)X   =  β0     
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Y|X  =  β0 

 



HA: 1   ≠  0 
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 Y|X  =  β0   +  β1X     

 

 

We test the null hypothesis with the t-test for zero 

slope. 

 

The test statistic is t  =  
01

1

b

SE(b )


 

 
 

If the null hypothesis is true and our population 

model is correct, t has the tn – 2 distribution. 



summary(model) 
 
 

Call: 
lm(formula = SBP ~ Age, data = hd) 
 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  59.0916    12.8163   4.611 6.98e-05 *** 
Age           1.6045     0.2387   6.721 1.89e-07 *** 
 

 

We can reject the null hypothesis at the 1% level of 

significance. The data suggest that β1 is significantly 

greater than 0. This suggests a significant, positive 

linear relationship between Age and mean SBP 



 
A Confidence Interval for 1 

 

b1   ±   tn – 2 SE(b1) 

 
confint(model, level = 0.9) 
 
                  5 %      95 % 
(Intercept) 37.339086 80.844164 
Age          1.199337  2.009663 
 

 

We can be 90% confident that the slope of the 

population line (the change in mean SBP for each 

additional year of age) lies between 1.12 and 2.09 

mm. 



The F test in Regression is based on the ANOVA 

table. 

 
Source of 

Variation 

Sum of 

Squares 

df Mean Square F p 

------------------------------------------------------------------------------------ 

Regression 3861.630     1 3861.630 45.177 0.000 

      

Residual 2564.338   30     85.478   

------------------------------------------------------------------------------------ 

Total 6425.969   31    
 

H0: 1   =  0  HA: 1   ≠  0 

 

If H0 is true both MSREG and MSRES are estimates 

for 
2
 and so the ratio F = MSREG/MSRES should 

be around 1. The larger this ratio, the greater the 

support for HA. 



The p-value is the area under the F 1, 30 distribution 

to the right of the 45.18. 

 

 
 

 

Same conclusion as that of the t test! 

 

Interestingly, the F test in simple regression is 

essentially equivalent to the two-sided t test in 

regression. In fact, you can easily verify that the F 

value is simply the square of the t value. 

 

F  =  45.18  =  6.72
2
  = t

2 



The Accuracy of Predictions 
 

When X = 50:  

 

Ŷ   =    59. 09    +    1.605 (50)  =  139.31 mm.   

 

 
 

 

The value 139.31 is an estimate for Y|50, the 

(unknown) blood pressure for 50-year old Florence.  

 

The value 139.31 is also an estimate for µY|50, the 

mean SBP over all 50-year old patients. 

 

Can we estimate Y|50 and µY|50 equally accurately? 



If the population model is valid, a confidence 

interval for µY|x  is  
    

 

   Ŷ          tn – 2 

2

2
e 2

1 (x - X)
( + )S
n Σ(X - X)

  

 

 

X (Age)      Ŷ                        CI for µY|x                Width 

--------------------------------------------------------------------------------------- 

40  123.27  116.00  -  130.54  14.54 mm 

 

50  139.32  135.62  -  143.01     7.39 mm 

 

60  155.36  150.67  -  160.05                9.38 mm 

 

70  171.41  162.58  -  180.23      17.65 mm 

 

X  =  53.25 years 



Predictions using the regression line are more 

accurate the closer the value for x (for which we 

wish to make the prediction) is to X. 
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If the population model is valid, a confidence interval 

for µY|x  is:  

 

  Ŷ          M 

 

             Ŷ          tn – 2 SE( Ŷ ) 
  

   Ŷ          tn – 2 

2

2
e 2

1 (x - X)
( + )S
n Σ(X - X)

  

 

 

The form of SE( Ŷ ) reflects the uncertainty due to 

estimating µY|x  from the sample (least-squares) line. 

 

(If we knew the exact form of the population line  

 

SBP =    β0   +  β1X 

 

We could compute µY|x  for any age (X).)   

 



If the population model is valid, a prediction interval 

for Y|x  is:   

            Ŷ          M 

    

            Ŷ          tn – 2 SE( Ŷ ) 

 

            Ŷ         tn – 2 

2

2 2
e e 2

1 (x - X)
 + ( + )S S

n Σ(X - X)
 

                                              |__|        |______________________| 

  

 

Here, the form of SE( Ŷ ) reflects two sources of 

variability in estimating Y|x.  

 

One is, as before, due to estimating µY|x from the 

sample (least-squares) line.  

 

The second source of variability is the fact that the 

individual values for Y vary around their mean, µY|x. 

We estimate this second source of variability by Se
2
. 

 

Even if we knew the population line (and hence µY|x) 

we would not know Y|x. 



Comparing Confidence and Prediction Intervals  

 

   x = 40 yrs   x = 50 yrs 
------------------------------------------------------------- 

Ŷ    123.3 mm   139.3 mm 

   
95% CI for µY|x 116.0 - 130.5 135.6 – 143.0 
   
Width       14.5 mm      7.4 mm 
 
 

  

95% PI for Y|x 103.0 – 143.5 120.1 – 158.6 
   
Width      40.5 mm      38.5 mm 
 



Obtaining Confidence Intervals for µY|x  

 

Estimating the mean SBP for ages 40, 50, 60, and 70, 

with a 90% confidence interval 

 
model <- lm(SBP ~ Age,  data = hd) 
a <- c(40, 50, 60, 70)  # new values for Age 
k <- data.frame(Age = a) 
p <- predict(model, newdata = k, interval =  
     "confidence", level = 0.9) 
p 
       fit      lwr      upr 
1 123.2716 117.2289 129.3144 
2 139.3166 136.2460 142.3873 
3 155.3616 151.4662 159.2570 
4 171.4066 164.0751 178.7381 
 
 
 
width <- p[,3] - p[,2] 
width <- round(width,2) 
d <- data.frame(a, round(p,2), width) 
d 
   a    fit    lwr    upr width 
1 40 123.27 117.23 129.31 12.09 
2 50 139.32 136.25 142.39  6.14 
3 60 155.36 151.47 159.26  7.79 
4 70 171.41 164.08 178.74 14.66 
 

mean(hd$Age) 
[1] 53.25 



Obtaining Prediction Intervals for Y|x  

 

Estimating the SBP for four individual patients aged 40, 

50, 60, and 70 respectively, with a 90% prediction 

interval. 

 

 
model <- lm(SBP ~ Age,  data = hd) 
a <- c(40, 50, 60, 70)  # new values for Age 
k <- data.frame(Age = a) 
p <- predict(model, newdata = k, interval =  
     "predict", level = 0.9) 
p 
       fit      lwr      upr 
1 123.2716 106.4564 140.0868 
2 139.3166 123.3271 155.3061 
3 155.3616 139.1934 171.5298 
4 171.4066 154.0865 188.7268 
 
 
 
width <- p[,3] - p[,2] 
width <- round(width,2) 
d <- data.frame(a, round(p,2), width) 
d 
   a    fit    lwr    upr width 
1 40 123.27 106.46 140.09 33.63 
2 50 139.32 123.33 155.31 31.98 
3 60 155.36 139.19 171.53 32.34 
4 70 171.41 154.09 188.73 34.64 



Obtaining a Confidence/Prediction Band 
 
df = data.frame(x = hd$Age, y = hd$SBP) 
mod = lm(y ~ x, data = df) 
allx = seq(min(df$x), max(df$x)) 
k = data.frame(x=allx) 
preds = predict(mod, k, interval = 
"confidence") 
preds2 = predict(mod, k, interval = "predict") 
# plot 
plot(y ~ x, data = df) 
# model 
abline(mod) 
# intervals 
lines(allx, preds[ ,3], col = "hotpink") 
lines(allx, preds[ ,2], col = "hotpink") 
lines(allx, preds2[ ,3], col = "lightblue") 

lines(allx, preds2[ ,2], col = "lightblue") 
 
 

 



Options Available with the lm Function 

model <- lm(y ~ x,  df) 

 

summary(model) 

 

Displays detailed results for the fitted 

model 

coef(model) Lists the intercept and the slope(s) for the 

fitted model 

  

confint(model) Provides the CI’s for the population model 

slopes (95%) 

  

fitted(model) Lists the predicted/fitted values in a fitted 

model 

  

resid(model Lists the residual values in a fitted model 

  

anova(model) Generates an ANOVA table for a fitted 

model, or an ANOVA table comparing two 

or more fitted models 



Computer Intensive Inference Methods in Regression 

 

The ‘traditional’ inference methods in regression rely 

on the validity of the linearity, Normality, and the 

equal standard deviation conditions.  

 

If these conditions are valid, the statistical theory 

tells us that the sampling distribution of the statistic: 

 

1 1

1

b - β

SE(b )
 

 

is a t distribution with n – 2 degrees of freedom. 
 

This structure is the basis for the confidence 

intervals and tests we have looked at. This structure 

is suspect on a number of grounds: 

 

What if one or more of the conditions are invalid? 

 

The entire structure is opaque to non-statisticians 
 

 

A more transparent approach is to use computer-

intensive methods 



A Bootstrap Confidence Interval for β1 
 

(a) Select many, many samples of size n = 32 with 

replacement from the 32 SBP, Age pairs in hd.csv. 

 

(b) For each sample, compute and store the slope 

(b1) of the regression line relation SBP to Age. This 

will form a pseudo-sampling distribution for b1.
 

 

(c) Compute the mean of the b1’s [b1*] and the 

standard deviation of the b1’s [S*] 

 

(d) If the sampling distribution of the b1’s looks 

approximately bell-shaped, an attractive CI for β1 

can be obtained from the appropriate percentiles of 

the distribution of b1. For example a 95% bootstrap 

CI for β1 is  formed by the 2.5
th
 percentile and the 

97.5
th
 percentile of the b1’s 

 

 

b1, 0.025    to  b1, 0.975     
 

 

 

 

 



Here is the annotated R script that will compute and 

store 10000 bootstrap values for b1. 
 

 
boot.slope <- numeric(1000) 
for (i in 1:1000) 
{ 
# take a sample of 32 rows with replacement 
s <- hd[sample(1:32, 32, replace = T),]  
# now regress SBP on Age 
l <- lm(SBP ~ Age, data = s)  
# c is a vector containing the intercept and the slope 
c <- coef(l)  
boot.slope[i] <- c[2] 
} 
 

 

Here is a histogram of the 1000 values for b1. 
 

 
hist(boot.slope, main =  
 "Histogram of 10000 b1's", breaks = 30,  
  col = "pink") 

 



Here is the 95% bootstrap percentile interval for β1 

 

quantile(boot.slope, c(0.025, 0.975)) 
 
    2.5%    97.5%  
1.110327 2.087187  
 

 

 
As a reminder, here is our theory-based 95% confidence 
interval for β1. 
 
 
confint(model) 
 
                2.5 %    97.5 % 
(Intercept) 32.917327 85.265923 
Age          1.116977  2.092023   

 
 

 

 

 

 

 

 

 

 



A Permutation Test of H0: β1 = 0  

 
model <- lm(SBP ~ Age, data = hd) 
model 
 
 

Coefficients: 
(Intercept)          Age   
     59.092        1.605   
 

 

If the null hypothesis is true how unusual is a sample 

slope as large as b1 = 1.605? 

 

The key idea here is that, if the null hypothesis is 

true, Age and SBP are linearly independent, and so 

the assignment of the Ages to the SBP’s can be 

viewed as occurring at random. 

 

We take advantage of this fact to produce a 

permutation test of H0: β1 = 0 against the 

(conservative) alternative hypothesis HA: β1 ≠ 0. 

 



(a) Randomly assign the 32 ages to the 32 SBP’s. 

For this assignment compute and save the slope (b1) 

of the regression line relating SBP to Age. 

 

 

(b) Repeat this process a large number (999, 4999, 

etc) of times.  

 

 

(c) Compute the p-value as the proportion of 

occasions on which the slope of the sample 

regression line is more extreme than the slope of the 

line for the observed data.  

 

You need to include the observed occasion in both 

the numerator and the denominator of this 

proportion. 

 

 

 



Here is the annotated R script that will compute and 

store 4999 values for b1 under the assumption that 

H0: β1 = 0 is true. 
 
 
perm.slope <- numeric(4999) 
for (i in 1:4999) 
{ 
# randomly mix the 32 ages into the vector t 
t <- sample(hd$Age, 32) 
# now regress SBP on the vector t 
l <- lm(hd$SBP ~ t) 
# the slope of the line will be saved as c[2] 
c <- coef(l) 
perm.slope[i] <- c[2] 
} 
 

For a two-sided test, compute the p-value with the 

command: 

 
pvalue <- (sum(abs(perm.slope) > 1.605) + 1)/5000 
pvalue 
[1] 2e-04 

 

The p-value is 1/5000.  Assuming Age and SBP are 

linearly independent, not one of the 4999 random 

assignments of Ages to SBP created a slope as 

large as the one we observed (1.605). 

 

We can reject the null hypothesis at the 1% level of 

significance.  



hist(perm.slope, main =  
 "Histogram of 4999 b1's", breaks = 30,  
  col = "pink") 
abline(v = 1.6, col = "blue") 

 

 



Helpful Guides to R 

 
http://polisci.msu.edu/jacoby/apsa07/graphics/refers/Maindonald

,%20Using%20R.pdf 

 

http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf 

 

http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf 

 

http://cyclismo.org/tutorial/R/ 

 

http://ww2.coastal.edu/kingw/statistics/R-tutorials/ 

 

http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-

Intro.pdf 

 

http://www.tfrec.wsu.edu/TFREConly/r4beginners_v3.pdf 
 

 


